Enantioselective Pinacol Coupling of Aromatic Aldehydes Mediated by TiCl₄(THF)₂/Zn with Tartaric Ester[†]

LI, You-Gui(李有桂) JIANG, Chen(江辰) ZHAO, Jun(赵俊) TIAN, Qing-Shan(田青杉) YOU, Tian-Pa*(尤田耙)

Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China

Asymmetric pinacol coupling of aromatic aldehydes mediated by low valent titanium complexes of chiral ligands derived from natural tartaric acid provided corresponding pinacols in good yields with excellent diastereo-selectivities and moderate enantioselectivities.

Keywords pinacol, asymmetric coupling, enantioselectivity, tartaric acid

Introduction

Reductive coupling of carbonyl compounds which leads to vicinal diols is one of the most important reactions for the formation of carbon-carbon bond.¹ Its mechanism and applications have been intensively studied for many years.² Recently the reductive coupling of carbonyl compounds has been used in the synthesis of HIV-protease inhibitors³ and some natural products such as taxol.⁴

Since the pioneering contributions in this field by Mukaiyama⁵ and McMurry⁶, various metals including Na,⁷ Zn,⁸ Mg,⁹ Mn,¹⁰ Sn,¹¹ Ti,¹² Sm,¹³ Al,¹⁴ Ce,¹⁵ Te,¹⁶ U,¹⁷ Cr¹⁸ and V¹⁹ have been shown to efficiently mediate or catalyze pinacol coupling reaction. Several chiral ligands have been introduced to conduct this reaction in enantioselective versions. However, only poor or moderate enantioselectivties were obtained²⁰ when catalytic amount of chiral ligands was used. Bensari²¹ remarkably improved the enantioselectivity by using a titanium complex of Schiff-base ligand with single chiral center. More recently, Joshi²² further enhanced the enantioselectivity with a titanium complex of the tetradentate Schiff base. We had indicated that TiCl₄-Zn/chiral diamines could reduce aromatic aldehydes to give the vicinal diols in good yields, dl-diastereoselectivities and moderate enantioselectivities.²³ Here, we would like to report the results of our continued study on this reaction using tartaric esters.

Results and discussion

The chiral bidentate ligands 1-4 (Scheme 1) were derived from the natural tartaric acid. Their chiral titanium complexes were obtained by an exchange reaction between chiral ligands 1-4 and TiCl₄(THF)₂ in a ratio

of 2:1.

Scheme 1

To optimize the reaction condition, the coupling reactions were investigated with different ligands, metals, reaction temperatures and the amounts of ligands (Table 1). The best results were achieved in CH_2Cl_2 at 20 °C for 20 min in the presence of stoichiometric amount ligand 4 and Zn as the reductant (Entries 1–4). The diastereoselectivity and enantioselectivity were remarkably decreased when the catalyst loading was decreased from the stoichiometric amount to 25 mol% (Entries 4, 8 and 9). The higher temperature was unfavorable to the yield, diastereoselectivity and enantioselectivity (Entry 5). Further lowering of the temperature seemed to be able to slightly increase the enantioselectivity (Entries 6 and 7). Simultaneously, the bulky ester groups could obviously improve the enantioselectivities (Entries 3, 4 vs. 1, 2).

Under the optimized conditions, pinacol coupling of various aldehydes was investigated and the results are summarized in Table 2. The aromatic aldehydes possessing an electron-donating group are more favorable to improve the diastereoselectivity and enantioselectivity (Entries 3 and 4) than the substrates with an electron-withdrawing group (Entries 5 and 6). The isobutyraldehyde was also tested in the pinacol coupling reaction as substrate. However, no corresponding pinacol was isolated (Entry 7).

* E-mail: ytp@ustc.edu.cn

Received March 31, 2004; revised and accepted July 18, 2004.

Project supported by the National Natural Science Foundation (No. 20172049) of China. [†]Dedicated to Professor Chengye Yuan on the occasion of his 80th birthday.

 Table 1
 Pinacol coupling of benzaldehyde under various conditions^a

2PhCHO $\xrightarrow{\text{TiCl}_4/M/L^*}$ $\stackrel{\text{HO}}{}$ $\stackrel{\text{Ph}}{}$ $\stackrel{\text{HO}}{}$ $\stackrel{\text{Ph}}{}$ $\stackrel{\text{HO}}{}$ $\stackrel{\text{Ph}}{}$ $\stackrel{\text{OH}}{}$								
		dl	meso					
Entry	Ligand/ mmol%	Temp./ °C	Yield ^b /%	dl/meso ^c	ee ^c /% (S,S)			
1	1 (100)	20	91	dl only	44			
2	2 (100)	20	87	<i>dl</i> only	45			
3	3 (100)	20	93	<i>dl</i> only	64			
4	4 (100)	20	95	<i>dl</i> only	67			
5	4 (100)	50	64	91:9	25			
6	4 (100)	0	94	<i>dl</i> only	69			
7	4 (100)	-20	97	<i>dl</i> only	70			
8	4 (50)	20	47	87:13	33			
9	4 (25)	20	43	84:16	18.6			
10^d	4 (100)	20	82	<i>dl</i> only	56			
11^e	4 (100)	20	79	<i>dl</i> only	48			

^{*a*} The reaction was carried out in CH₂Cl₂ at 20 °C with chiral ligands, Zn as reductant for 20 min. ^{*b*} Isolated yield. ^{*c*} Measured by HPLC on chiralcel-OJ-H column; Hexane : 2-propanol=9 : 1, flow rate=0.5 mL/min, $t_r(S,S) = 27.3 \text{ min}, t_r(R,R) = 30.2 \text{ min}, t_r(meso) = 37.5 \text{ min}. ^{$ *d*} Mn as reductant. ^{*e*} Mg as reductant.

Table 2 Pinacol coupling of aromatic aldehydes in the presenceof 4^a

	2ArCHO TiCl ₄ (THF) ₂ /L TMSCI, Zn		∠Ar H	
	1a —1h	2a –		
Entry	Aldebude 1	Yield ^b /%	dl/meso ^c	<i>ee^c</i> /%
Enuy	Aldeliyde 1	of 2		(S,S)
1	Benzaldehyde (a)	95 (a)	dl only	67
2	1-Naphthaldehyde (b)	92 (b)	dl only	65
3	4-Methoxybenzaldehyde (c)	95 (c)	dl only	68
4	4-Tolualdehyde (d)	96 (d)	dl only	70
5	2-Chlorobenzaldehyde (e)	85 (e)	dl only	49
6	4-Chlorobenzaldehyde (f)	83 (f)	dl only	47
7	Isobutyraldehyde	0		_

^{*a*} The reactions were carried out in CH₂Cl₂ at 20 °C with a stoichiometric amount of chiral ligand **4**, Zn as reductant for 20 min. ^{*b*} Isolated yields. ^{*c*} Measured by HPLC on chiral column.^{23,24}

Experimental

General

All reactions were carried out under argon atmosphere. Commercial reagents were used without further purification. All solvents were dried using standard methods and freshly distilled before use. Melting points were determined using a hot-stage apparatus and uncorrected. NMR spectra were measured on a Bruker av300 spectrometer (300 MHz) by using CDCl₃ as solvent and TMS as internal standard. Mass spectra (EI) were determined on a TRACE-MS spectrometer. IR spectra were recorded on a Bruker VECTOR-22 (KBr) spectrometer. Elemental analyses were performed on a Vari EIII spectrometer. GC-MS and HPLC analyses were performed using TRACE/GC-MS spectrometer and AGILENT1100 SERIES spectrometer, respectively. The diastereomeric excesses *dl/meso* and the enantiomeric excesses were determined by ¹H NMR analysis and HPLC using chiral stationary phases respectively.

Chiral ligands were prepared according to the literature procedures²⁵ with slight modification. **1:** m.p. 17 °C, $[\alpha]_D^{20}$ +7.5 (neat) [lit.^{25b} m.p. 17 °C; $[\alpha]_D^{20}$ +7.9 (neat)]. **2:** $[\alpha]_D^{20}$ +88 (*c* 1.0, C₂H₅OH) [lit.^{28a} $[\alpha]_D^{20}$ +89.9 (*c* 1.0, C₂H₅OH)]. **3:** m.p. 49—51 °C, $[\alpha]_D^{20}$ +18.5 (*c* 1.0, C₂H₅OH) [lit.^{25b}, m.p. 50 °C; $[\alpha]_D^{15}$ +19.3 (*c* 1.0, C₂H₅OH)]. **4** m.p. 81—83 °C, $[\alpha]_D^{20}$ +112.5 (*c* 1.0, C₂H₅OH); ¹H NMR (CDCl₃, 300 MHz) δ : 3.11 (s, 3H, OCH₃), 4.60 (s, H, CH), 4.53 (s, 2H, CH₂), 7.33—7.35 (m, 5H, Ph).

The optimized procedure of pinacol coupling is as follows: to a 50 mL three neck flask, a solution of TiCl₄ (4.0 mmol) in a mixed solvent of CH₂Cl₂ (8 mL) and THF (8.0 mmol) was added carefully and stirred for 3 min, then the chiral ligands (4.0 mmol) in $CH_2Cl_2(1 \text{ mL})$ was added dropwise at 20 °C. After stirring for 5 min, zinc powder (4.0 mmol) was added in one portion. The color of the reaction mixture changed to green immediately. After stirring for additional 3 min, a solution of aromatic aldehyde (4.0 mmol) in CH₂Cl₂ (1 mL) was introduced to the reaction mixture. After further being stirred for 20 min, the reaction mixture was quenched with a saturated solution of NaHCO₃ (5 mL). The stirring was continued for 20 min, and the solution was diluted with ethyl acetate. The mixture was filtered through sintered glass funnel. The aqueous phase was separated and extracted with ethyl acetate $(2 \times 10 \text{ mL})$. The organic phase was washed with saturated solution of NaCl (2×10 mL), and dried over Na₂SO₄. The product was purified by silica gel chromatographic column to give pure hydrobenzoin. The chiral ligands could be recovered from the organic phase (43%-56%). The authenticity of the product was established by their ¹H-NMR, IR and Mass spectra.

1,2-Diphenyl-1,2-ethanediol (**2a**): m.p. 147—149 °C [lit.²⁶ m.p. 148—150 °C]; $[\alpha]_D^{20} = 60.5$ (*c* 1.0, EtOH); ¹H NMR (CDCl₃, 300 MHz) δ : 2.03 (s, 2H, OH), 4.72 (s, 2H, PhCH), 7.12—7.30 (m, 10H, Ph). Enantiomeric excess was determined by HPLC on chiralcel-OJ column (Hexane : 2-propanol=90 : 10, flow rate=0.5 mL/min): $t_r(S,S)$ =27.3 min, $t_r(R,R)$ =30.2 min.

1,2-Di(1-naphthyl)-1,2-ethanediol (**2b**): m.p. 122~ 124 °C; $[\alpha]_D^{20}$ = 54.5 (*c* 1.0 CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ : 1.71 (s, 2H, OH), 5.79 (s, 2H, CH for *dl*), 5.81 (s, 2H, CH for *meso*), 7.96—7.26 (m, 14H, Ar). Enantiomeric excess was determined by HPLC on chiralcel-AD column (Hexane : 2-propanol=85 : 15, flow rate=1.0 mL/min): $t_r(S,S)=20.8 \text{ min}, t_r(R,R)=$

23.4 min.

1,2-Di(4-mthoxylphenyl)-1,2-ethanediol (**2c**): m.p. 130—132 °C [lit.²⁶ m.p. 132—134 °C] $[\alpha]_D^{20}$ —70.5 (*c* 1.0, C₂H₅OH); ¹H NMR (CDCl₃, 300 MHz) δ : 1.68 (s, 2H), 3.75 (s, 6H), 4.63 (s, H, *dl*), 4.74 (s, H, *meso*), 6.74—7.22 (m, 10H). Enantiomeric excess was determined by HPLC on chiralcel-AD column (Hexane : 2-propanol=95 : 5, flow rate=1.0 mL/min): $t_r(S,S)$ = 8.9 min, $t_r(R,R)$ =10.9 min.

1,2-Di(4-methylphenyl)-1,2-ethanediol (2d): m.p. 104—105 °C (lit.²⁶ 105—107 °C); $[\alpha]_D^{20}$ —72.0 (*c* 1.0, EtOH); ¹H NMR (CDCl₃, 300 MHz) δ : 1.76 (s, 2H, OH), 2.43 (s, 6H, CH₃), 4.77 (s, 2H, ArCH), 7.28—8.01 (m, 8H, Ar). Enantiomeric excess was determined by HPLC on chiralcel-WH column (Hexane : 2-propanol=9 : 1, flow rate=1.0 mL/min): $t_r(S,S)=10.9$ min, $t_r(R,R)=$ 12.8 min.

1,2-Di(2-chlorophenyl)-1,2-ethanediol (2e): m.p. 130—131 °C (lit.²⁶ 132—133 °C); $[\alpha]_D^{20} - 27.0$ (*c* 0.10, EtOH); ¹H NMR (CDCl₃, 300 MHz) δ : 3.17 (s, 2H, OH), 5.39 (s, 2H, ArCH), 7.18—7.68 (m, 8H, Ar). Enantiomeric excess was determined by HPLC on chiral-cel-WH column (Hexane : 2-propanol=9 : 1, flow rate =0.8 mL/min): $t_r(S,S)$ =8.0 min, $t_r(R,R)$ =10.0 min.

1,2-Di(4-chlorophenyl)-1,2-ethanediol (**2f**): Colorless crystals; m.p. 119—120 °C (lit.²⁶ 121 °C); $[\alpha]_D^{20}$ —32.0 (*c* 0.1, C₂H₅OH); ¹H NMR (CDCl₃, 300 MHz) δ : 2.88 (s, 2H, OH), 4.63 (s, 2H, ArCH), 7.01—7.28 (m, 8H, Ar). Enantiomeric excess was determined by HPLC on chiralcel-WH column (Hexane : 2-propanol=95 : 5, flow rate=1.0 mL/min): $t_r(S,S)=7.3$ min, $t_r(R,R)=9.1$ min.

References

- (a) Wirth, T. Angew. Chem., Int. Ed. Engl. 1996, 35, 61.
 (b) Gansauer, A. Chem. Commun. 1997, 5, 457.
 (c) Schreiber, S. L.; Trost, B. M.; Fleming, I., Comprehensive Organic Synthesis, Pergamon Press, Oxford, 1991, p. 563.
- 2 (a) Fan, X.-S.; Zhang, Y.-M. *Chin. J. Org. Chem.* **2002**, *22*, 1 (in Chinese).
 - (b) Talukdar, S.; Fang, J. M. J. Org. Chem. 2001, 66, 330.
 - (c) Gansauer, A.; Bluhm, H. Chem. Rev. 2000, 100, 2771.
 - (d) Lim, H. J.; Keum, G.; Kang, B. S.; Chung, B. Y.; Kim, Y. *Tetrahedron Lett.* **1998**, *39*, 4367.

(e) Nomura, R.; Matsuno, T.; Endo, T. J. Am. Chem. Soc. **1996**, 118, 11666.

(f) Hays, D. S.; Fu, G. C. J. Am. Chem. Soc. 1995, 117, 7283.

(g) Askham, F. R.; Carroll, K. M. J. Org. Chem. 1993, 58, 7328.

(h) McMurry, J. E. Chem. Rev. 1989, 89, 1513.

(i) Kahn, B. E.; Rieke, R. D. Chem. Rev. 1988, 88, 733.

- 3 Kammermeier, B.; Beck, G.; Jacobi, D.; Jendralla, H. Angew. Chem., Int. Ed. Engl. 1994, 33, 685.
- 4 (a) Shiina, I.; Nishimura, T.; Ohkawa, N.; Sakoh, H.; Nishimura, K.; Saitoh, K.; Mukaiyama, T. *Chem. Lett.* **1997**, 419.

(b) Nicolaou, K. C.; Yang, Z.; Liu, J. J. J. Am. Chem. Soc. **1995**, 117, 634.

- 5 Mukaiyama, T.; Sato, T.; Hanna, J. Chem. Lett. 1973, 1041.
- 6 McMurry, J. E.; Fleming, M. P. J. Am. Chem. Soc. 1974, 96, 4708.
- 7 (a) Fittig, R. *Liebigs Ann.* 1859, *110*, 23.
 (b) Pradhan, S. K.; Thakker, K. R. *Tetrahedron Lett.* 1987, 28, 1813.
- 8 (a) Mukaiyama, T.; Yoshimura, N.; Igarashi, K.; Kagayama, A. *Tetrahedron* 2001, *57*, 2499.
 (b) Li, T.-Y.; Cui, W.; Liu, J. G.; Zhao, J. Z. *Chem. Commun.* 2000, *2*, 139.
 (c) Hirao, T.; Asahara, M.; Muguruma, Y. *J. Org. Chem.* 1998, *63*, 2612.
- 9 (a) Zhang, W. C.; Li, C. J. J. Org. Chem. 1999, 64, 3230.
 (b) Mecarova, M.; Toma, S. Green Chem. 1999, 1, 257.
- (a) Bensari, A.; Renaud, J. L. *Org. Lett.* 2001, *3*, 3863.
 (b) Bandini, M.; Cozzi. P. G.; Morganti, S. *Tetrahedron Lett.* 1999, *40*, 1997.
- 11 David, S. H.; Gregory, C. F. J. Am. Chem. Soc. 1995, 117, 7283.
- 12 (a) Yamamoto, Y.; Hattori, R.; Itoh, K. *Chem. Commun.* **1999**, 825.
 - (b) Gansäuer, A.; Bauer, D. J. Org. Chem. 1998, 63, 2070.
- 13 Sm Nomura, R.; Matsuno, T.; Endo, T. J. Am. Chem. Soc. 1996, 118, 1666.
- 14 Li, L.; Tai, H. Org. Lett. 2000, 2, 1126.
- 15 (a) Groth, U.; Jeske, M. Angew. Chem., Int. Ed. 2000, 39, 574.

(b) Groth, U.; Jeske, M. Synlett 2001, 126.

- 16 Khan, R. H.; Mathur, R. H.; Chosh, A. C. Synth. Commun. 1997, 27, 2193.
- 17 Maury, O.; Villier, C.; Ephritikhine, M. New J. Chem. 1997, 21, 137.
- 18 Svatos, A.; Boland, W. Synlett 1998, 549.
- (a) Hirao, T.; Hatano, B.; Imamoto, Y.; Ogawa, A. J. Org. Chem. 1999, 64, 7665.
 (b) Hirao, T.; Takeuchi, H.; Ogawa, A.; Sakurai, H. Synlett 2000, 1658.
- (a) Clerici, A.; Clerici, L.; Porta, O. *Tetrahedron Lett.* 1996, *37*, 335.
 (b) Gansauer, A.; Moschioni, M.; Bauer, D. *Eur. J. Org. Chem.* 1998, 1923.
 (c) Gansauer, A.; Bauer, D. *J. Org. Chem.* 1998, *63*, 2070.
 (d) Gansauer, A; Bauer, D. *Eur. J. Org. Chem.* 1998, 2573.
- 21 Bensari, A.; Renaud, J. L.; Riant, O. Org. Lett. 2001, 3863.
- 22 Chatterjee, A.; Bennur, T, H.; Joshi, N, N. J. Org. Chem. 2003, 68, 5668.
- 23 Li, Y.-G.; Jiang, C.-S.; Tian, Q.-S.; Ke, Y.-P.; You, T.-P. *Chin. J. Chem.* **2003**, *21*, 1369.
- 24 Enders, D.; Ullrich, E. C. *Tetrahedron: Asymmetry* **2000**, *11*, 3861.
- (a) Oskiki, T.; Kiriyama, T.; Routen, K. Chem. Lett. 2000, 334.

(b) Furia, F. D.; Joshimuro, N.; Igorashi, J. *Tetrahedron Lett.* 1986, *51*, 6257.

26 Prasad, K. R. K.; Joshi, N. N. J. Org. Chem. 1996, 61, 3888.

(E0403311 ZHAO, X. J.)